

NAMIBIA UNIVERSITY

OF SCIENCE AND TECHNOLOGY

FACULTY OF HEALTH AND APPLIED SCIENCES

DEPARTMENT OF NATURAL AND APPLIED SCIENCES

QUALIFICATION: BACHELOR OF SCIENCE		
QUALIFICATION CODE: 07BOSH	LEVEL: 7	
COURSE NAME: BIOCHEMISTRY: BIOCHEMICAL PRINCIPLES AND PRACTICE	COURSE CODE: BPP702S	
SESSION: NOVEMBER 2019	PAPER: THEORY	
DURATION: 3 HOURS	MARKS: 100	

FIRST OPPORTUNITY EXAMINATION QUESTION PAPER				
EXAMINER	DR LAMECH MWAPAGHA			
MODERATOR	DR PETRINA KAPEWANGOLO			

	INSTRUCTIONS
1.	Answer ALL the questions.
2.	Write clearly and neatly.
3.	Number the answers clearly.
4.	All written work MUST be done in BLUE or BLACK ink.

PERMISSIBLE MATERIALS

None

THIS QUESTION PAPER CONSISTS OF FIVE (5) PAGES

(Including this front page)

QUESTION 1 [14]

a) Calculate the pH of a solution 0.75 M lactic acid ($Ka = 1.4 \times 10^{-4}$) and 0.25 M sodium lactate. (3)

- b) Calculate the pH of a buffer solution that initially consists of 0.0500 M NH₃ and 0.0350 M NH₄⁺. (Ka for NH₄⁺ = 5.6×10 -10).
- c) Given the structures of lysine and the pKa values as shown below:

Determine the pI value of lysine. Show clearly how you arrive at the answer. (6)

QUESTION 2 [14]

- a) State FOUR (4) chemical reactions of amino acids that are due to the side chain (R) (4)
- b) Describe the following techniques used for the separation and purification of amino acids and proteins (6)
 - I. Affinity Chromatography
 - II. Size Exclusion Chromatography
 - III. Gel Electrophoresis
- c) Briefly discuss the interplay between HCO₃, H₂CO₃ and CO₂ in blood buffering. (4)

QUESTION 3 [12]

- a) Discuss the mode of action of small interfering RNAs (siRNAs) (4)
- b) What are the special features found at the 5' end and the 3' end of mature eukaryotic mRNA? (4)
- c) Draw the Haworth projection of the monosaccharide below in the α and β forms. (4)

$$CH_2OH$$
 $C=O$
 $HO-C-H$
 $H-C-OH$
 CH_2OH

QUESTION 4 [16]

- a) Briefly discuss **FOUR (4)** classes of enzyme specificity (4)
- b) Describe the chemical basis of enzyme specificity (3)
- c) The figure below shows a stable structure of a protein. The dashed line divides the structure into three regions labelled A, B, and C.

l.	I. Does this protein have a quaternary structure and how do you reach that conclusion? (2			
II.	II. Explain why it is likely that each of these three regions folds independently.			
III.	III. Which one of the three parts of this protein is comprised mostly of α -helical secondary structure?			
IV.	Which one of the three parts of this protein is comprise structure?	d mostly of β-sheet secondary	(1)	
V.	For your answer to part IV above, what kind of $\beta\mbox{-sheet}$ the protein?	structure is present in this part of	(3)	
QUES	STION 5		[14]	
a) [a) Describe the anabolic role of the TCA cycle in Gluconeogenesis.			
	b) Using structural formulas, write the balanced chemical equation for the reactions where $FADH_2$ is produced in the Kreb cycle.			
c) E	c) Briefly explain the Electron Transport Chain/Oxidative Phosphorylation process.			
QUESTION 6				
a) D	a) Describe how acidification in the stomach takes place.			
b) B	b) Briefly discuss how fatty acids are activated and transported into the mitochondria			
	latch the phrase on the left with the letter of the answerescription of fatty acid (FA) metabolism (only one answe			
I. Ar	oxidant in FA degradation pathway:	A. Palmitoyl CoA		
II. A	reductant in FA synthesis pathway:	B. Acetyl CoA carboxylase		
III. Ca	talyzes the commitment step in FA degradation:	C. Cytosol		
V. Bu	rilding block of FA synthesis:	D. FAD/FADH2 E. Carnitine acyltransferase I F. Phosphoenolpyruvate carboxykinase		
V. Su	bcellular location of FA degradation:			
	talyzes the commitment step in FA synthesis:	G. Mitochondrial matrix H. Coenzyme Q (QH2)		
		I. Malonyl CoA I. NADPH/NADP+		

QUESTION 7		[14]
a)	Based on ADME properties, why is drug development a challenging task?	(4)
b)	Describe the two pathways utilized by the body for the excretion of compounds once they have entered the bloodstream	(6)
c)	Discuss how cholera toxin disrupts the regulation of intestinal secretion following GPCR Signalling.	(4)

THE END